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Abstract

WNT signaling has been implicated in both embryonic and postnatal bone formation. However, the pertinent WNT ligands
and their downstream signaling mechanisms are not well understood. To investigate the osteogenic capacity of WNT7B and
WNT5A, both normally expressed in the developing bone, we engineered mouse strains to express either protein in a Cre-
dependent manner. Targeted induction of WNT7B, but not WNT5A, in the osteoblast lineage dramatically enhanced bone
mass due to increased osteoblast number and activity; this phenotype began in the late-stage embryo and intensified
postnatally. Similarly, postnatal induction of WNT7B in Runx2-lineage cells greatly stimulated bone formation. WNT7B
activated mTORC1 through PI3K-AKT signaling. Genetic disruption of mTORC1 signaling by deleting Raptor in the osteoblast
lineage alleviated the WNT7B-induced high-bone-mass phenotype. Thus, WNT7B promotes bone formation in part through
mTORC1 activation.
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Introduction

WNT proteins are a family of signaling molecules that control cell

proliferation, fate decision, polarity and migration throughout

metazoan evolution [1]. By engaging various receptors and co-

receptors at the cell membrane, these proteins activate a context-

dependent intracellular signaling network to induce diverse biolog-

ical responses [2]. Deregulation of WNT signaling is frequently

associated with human diseases [3]. WNT signaling was first

associated with bone diseases by the finding that loss-of-function

mutations in the WNT co-receptor LRP5 cause osteoporosis-

pseudoglioma syndrome (OPPG) (Gong et al., 2001). In contrast,

deficiency in the secreted WNT inhibitor SOST, or mutations in

LRP5 rendering it refractory to the WNT inhibitors such as SOST

or DKK1, results in high bone mass in patients [4,5,6,7,8,9]. In

addition, mutations in WTX, an inhibitor of WNT/b-catenin

signaling, were shown to cause X-linked sclerosing bone dysplasia

known as OSCS in humans [10,11]. In the mouse, deletion of LRP5

either globally or specifically in bone causes osteopenia in the mouse

[12,13], whereas expression of the high-bone-mass forms of LRP5

increases bone accrual [13,14]. Moreover, mice lacking one DKK1

allele or both SOST alleles exhibit a higher bone mass [15,16].

Overall, genetic evidence from both humans and mice supports the

importance of WNT signaling in bone formation.

The intracellular signaling network mediating WNT function in

bone formation is not completely understood [17]. Work in the

mouse embryo has shown that deletion of b-catenin, or both LRP5

and LRP6, in the osteogenic progenitors abolishes osteoblast

differentiation, indicating that b-catenin is likely a critical

component of the WNT signaling network responsible for

embryonic osteoblastogenesis [18,19,20,21,22]. However, these

mice die at birth, and therefore are not useful for assessing whether

or not b-catenin similarly mediates WNT function in postnatal

bone formation. We and others have recently shown that deletion

of b-catenin in Osx-expressing cells selectively in postnatal mice

reduced the life span and activity of osteoblasts, as well as

increasing adipogenesis in the bone marrow [23,24]. Besides b-

catenin, activation of PKCd or CAMKII by WNT through

phosphatidylinositol signaling has also been shown to promote

osteoblast differentiation [25,26]. In addition, multiple WNT

ligands have been reported to activate mTORC1 (mammalian

target of rapamycin complex 1) [27,28]. We have recently shown

that WNT proteins also activate mTORC2 to stimulate glycolysis

[29]. mTORC1 differs from mTORC2 in that it uniquely

contains Raptor and is acutely sensitive to rapamycin [30].

Because mTORC1 signaling is a central mechanism integrating

extracellular and intracellular cues with anabolic metabolism, it

could potentially mediate WNT function during bone formation.
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Overall, WNT proteins may promote bone anabolism through a

signaling network composed of multiple interconnecting modules.

Despite a clear role for WNT signaling, the physiological WNT

ligands promoting bone formation are just beginning to be

elucidated. WNT1 has recently been linked to bone physiology in

humans, as heterozygous or homozygous mutations have been

identified in patients with inherited early-onset osteoporosis or

osteogenesis imperfecta, respectively [31,32,33,34]. In the mouse,

WNT10B has been implicated in postnatal bone formation

[35,36], but the low bone mass phenotype in the Wnt10b2/2

mice appears later in life than the Lrp52/2 animals [37], indicating

that LRP5 may interact with other WNT ligands at the earlier

stages. In the mouse embryo, WNT7B is specifically expressed

within the osteogenic perichondrium; deletion of Wnt7b in the

skeletal osteoprogenitors causes a delay in ossification, but the

phenotype is modest and largely resolved by birth, likely due to

WNT ligand redundancy [18,25]. In addition, WNT5A is

expressed in both the perichondrium and the cartilage in the

mouse embryo [18,38]. Studies to date have indicated that

WNT5A expressed by osteoblast-lineage cells promotes both

osteoblastogenesis and osteoclastogenesis, but WNT5A deficiency

causes a net decrease in bone mass in postnatal mice [26,39].

In this study, we investigate the capacity of WNT7B versus

WNT5A in regulating bone mass in vivo. We demonstrate that

WNT7B dramatically enhances bone formation. Mechanistic

studies identify mTORC1 as an important mediator for the bone

anabolic function of WNT7B.

Results

WNT7B, but not WNT5A, increases bone mass in vivo
To study the roles of WNT7B and WNT5A, we first developed

versatile mouse strains that allow these proteins to be expressed in

a tissue-specific manner. Specifically, we knocked the Wnt7b or

Wnt5a cDNA into the ubiquitously active Rosa26 locus so that

they can be expressed upon the excision of a transcriptional stop

signal by Cre (Fig. 1A) (Fig. S1). The resultant mouse strains, R26-

Wnt7b or R26-Wnt5a, did not show any discernible phenotype in

either heterozygous or homozygous state. To assess the potential

role of either protein in bone formation, we activated their

expression in the osteoblast lineage with either Osx-Cre targeting

preosteoblasts or 2.3ColI-Cre targeting the more mature osteoblast-

lineage cells. Mice expressing WNT5A from one or two R26-

Wnt5a alleles by 2.3Col1-Cre appeared normal, and did not exhibit

any obvious bone phenotype when analyzed by X-ray radiography

or mCT at two months of age (Fig. 1B, C) (Table 1). The R26-

Wnt5a allele was functional because its activation with Wnt1-Cre in

neural crest cells caused embryonic lethality with multiple cranial

facial defects (data not shown). We therefore focused on WNT7B

in the remainder of the study. Mice with WNT7B expression from

a single R26-Wnt7b allele by either Osx-Cre or 2.3ColI-Cre (hereafter

Osx-Wnt7b or ColI-Wnt7b mice) were viable without any gross

abnormality. However, X-ray radiography of either mutant at two

months of age detected profoundly dense bones throughout the

body (Fig. 1D–G) (Fig. S2). The X-ray images also revealed

shorter bones in the Osx-Wnt7b mice when compared to their

control littermates. The mechanism for the size difference was not

investigated in the present study, but to avoid size-related

complications we have focused the postnatal analyses on the

ColI-Wnt7b mice with a normal bone size. The severity of the high-

bone-mass phenotype in ColI-Wnt7b mice was epitomized by the

lack of marrow space in the long bones due to complete

ossification (Fig. 1G). As expected, these mice exhibited spleno-

megaly consistent with extramedullary hematopoiesis (Fig. S3A–

C). The high-bone-mass phenotype was fully penetrant in both

males and females, and persisted at six months of age but was

partially resolved at nine months (Fig. S4A, B). The mechanism for

the phenotype amelioration with aging was not fully pursued here,

but appeared to track with heightened bone resorption, as

indicated by the higher serum CTX-I level (C-terminal telopeptide

of type I collagen, a degradation product of type I collagen

released upon bone resorption) than the control, at nine but not six

months of age (Fig. S4C, D). MicroCT analyses of the two-month-

old ColI-Wnt7b mice confirmed the profound high-bone-mass

phenotype in both the skull and long bones (Fig. 1H–J). The

proximal tibial trabecular BV/TV was 13.7-fold elevated com-

pared to control at two months, coupled with increased trabecular

thickness and reduced trabecular spacing (Table 2). At six months

of age, BV/TV in the same area was 5.1 fold higher in ColI-Wnt7b

mice than the littermate control. Consistent with X-ray radiog-

raphy, by nine months, the high bone mass in the proximal tibial

trabecular area was resolved and in fact 30% less than the

littermate control, even though the distal tibia and the femur

maintained a high bone mass (Fig. S4B) (Table 2). Histology

confirmed that excessive bone occupied both primary and

secondary ossification centers, whereas the growth plate was

largely normal in the ColI-Wnt7b mice (Fig. 2A, B). Thus, WNT7B

induction in osteoblast-lineage cells markedly increases bone mass

throughout the body in postnatal mice.

WNT7B increases osteoblast number and activity
We next investigated whether WNT7B increased bone mass by

altering bone formation or resorption. To assess bone formation

activity, we first measured serum levels of osteocalcin, a major

non-collagenous protein produced by osteoblasts. Osteocalcin

levels were significantly higher in ColI-Wnt7b than the control at

both one and two months of age (Fig. 2C). Histomorphometry

showed a higher osteoblast number normalized to bone surface in

ColI-Wnt7b over control mice at two months of age (Fig. 2D). The

density of osteocytes however was not changed (Fig. S5). Dynamic

histomorphometry in these animals revealed that mineral appo-

sition rate (MAR), the percentage of mineralizing surface (MS/

BS), and bone formation rate (BFR/BS) were all increased in the

humerus of ColI-Wnt7b over the normal counterpart (Fig. 2E–G).

To examine whether WNT7B affected bone resorption, we

measured serum CTX-I levels. Despite the high bone mass,

ColI-Wnt7b mice exhibited a higher serum CTX-I level than

normal at one month of age (Fig. 2H, left). At two months, CTX-I

levels were similar between ColI-Wnt7b and control mice (Fig. 2H,

right). Static histomorphometry showed that both osteoclast

number per bone surface (#Oc/mm) and the percentage of bone

resorption surface (Oc S/BS) were reduced in the ColI-Wnt7b mice

Author Summary

The human bone tissue is of considerable regenerative
capacity as reflected in bone remodeling and in fracture
healing. However, bone tissue regeneration deteriorates
with age, and tremendous unmet medical needs exist for
safe and effective strategies to stimulate bone formation in
older individuals commonly inflicted with osteoporosis or
osteopenia. WNT signaling has emerged as a promising
target pathway for developing novel bone anabolic
therapeutics. Identifying bone-promoting WNT ligands
and elucidating the underlying mechanisms may lead to
useful therapeutic targets. The present study reports that
WNT7B potently enhances bone formation through acti-
vation of mTORC1 in the mouse.
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at two months of age, whereas osteoclast spreading (mm/Oc) was

not changed (Fig. 2I). These results indicate that osteoclastogenesis

was likely suppressed in the WNT7B-overexpressing mice, but the

total activity of bone resorption was not reduced at any of the ages

examined. Thus, WNT7B increases bone mass mainly through

stimulation of osteoblast number and activity.

WNT7B stimulates bone acquisition in the embryo
As WNT7B induction by 2.3ColI-Cre or Osx-Cre began in the

embryo, we next determined whether WNT7B affected embryonic

bone formation. Whole-mount skeletal staining with alcian blue

and alizarin red revealed that at E18.5, both ColI-Wnt7b and Osx-

Wnt7b embryos exhibited thicker bones with more intense red

staining than normal, indicative of higher bone mass (Fig. 3A, data

not shown). Histological sections of the embryonic long bones

confirmed excessive bone mass occluding the presumptive marrow

cavity (Fig. 3B, data not shown). Because both types of mutant

embryos exhibited essentially the same phenotype, we have used

either mutant for the embryonic analyses depending on their

availability at the time of experiment. In situ hybridization of

osteoblast markers in the bones of E18.5 ColI-Wnt7b embryos

confirmed the presence of excessive osteoblasts within the

presumptive marrow cavity (Fig. S6). Analyses of E14.5 Osx-

Wnt7b embryos revealed a slight delay in chondrocyte maturation,

as indicated by the shorter domains of Col10a1 (general

hypertrophy marker) and MMP13 (late hypertrophy marker)

(Fig. 3C). However, osteoblast differentiation in these embryos

appeared to be normal, even though the expression domains of

AP, Runx2, and Osx in the perichondrium were slightly reduced, as

expected from the delay in chondrocyte maturation (Fig. 3C). At

E16.5, the Osx-Wnt7b long bones possessed a much thicker bone

collar than normal, but no bone marrow in stark contrast to the

control (Fig. 3D). In situ hybridization revealed that the presump-

tive marrow region was occupied by cells expressing Osx but not

osteocalcin (OC) and therefore likely to be preosteoblasts (Fig. 3D).

Immunostaining for the endothelial marker CD31 indicated that

the region was vascularized even though no marrow cavity was

formed (Fig. 3E). At E18.5, the presumptive marrow region was

populated with mature osteoblasts expressing OC (Fig. 3F). In

summary, WNT7B does not prematurely initiate bone formation

in the perichondrium, but augments the process in both cortical

and trabecular regions of the late-stage embryo.

Figure 1. WNT7B, but not WNT5A, increases bone mass in vivo. (A) A schematic for generating mice with Cre-dependent overexpression of
WNT7B or WNT5A. (B–C) X-ray images of hindlimbs of two-month-old ColI-Cre (Ctrl) (B) or ColI-Wnt5a littermate mice (C). (D–G) X-ray images of the
axial skeleton (D, E) and hindlimbs (F, G) of two-month-old ColI-Cre (Ctrl) (D, F) versus ColI-Wnt7b littermate mice (E, G). Arrows denote increased
mineral density in sterna, ribs and spine. (H–I) mCT 3D reconstruction of skulls from two-month-old ColI-Cre (Ctrl) (H) or ColI-Wnt7b littermate mice (I).
H1, H2, I1, I2 show a single-slice mCT scan at positions indicated by the red or green line. (J, K) mCT 3D reconstruction of tibias from two-month-old
ColI-Cre (Ctrl) (J) or ColI-Wnt7b littermate mice (K).
doi:10.1371/journal.pgen.1004145.g001
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WNT7B enhances bone accrual in postnatal mice

We next sought to determine whether temporal activation of

WNT7B specifically in postnatal bones stimulates bone formation.

To this end, we created a mouse line (referred as Runx2-rtTA) that

expressed reverse tetracycline transactivator (rtTA) from the Runx2

regulatory elements through bacterial artificial chromosome (BAC)

recombineering (Fig. 4A). To characterize the Runx2-rtTA line, we

produced mice with the genotype of Runx2-rtTA;TetO-Cre;R26-mT/

mG (termed Runx2-mTmG) and assessed GFP expression with or

without doxycycline (Dox). Without Dox, no GFP was detected in

these mice at either embryonic or postnatal stage (data not shown).

When Dox was administered to the embryos through the dams,

the Runx2-mTmG neonates, but not the control littermates,

displayed strong GFP throughout the skeleton when viewed

whole-mount under a fluorescence microscope (Fig. 4B, C).

Confocal microscopy of long bone sections confirmed GFP

expression only in the Runx2-mTmG neonates, but not in the

control littermates (Fig. 4D–G). Closer examination of the Runx2-

mTmG samples revealed GFP expression by a small subset of

chondrocytes within the growth plate (Fig. 4G1), but most

prominently in osteoblast-lineage cells associated with the primary

spongiosa and the cortical bone (Fig. 4G2, G3). Additionally, GFP

was detected in sporadic bone marrow stromal cells and

perivascular cells located within the marrow cavity (Fig. 4G3).

To characterize the Runx2-rtTA transgene postnatally, we raised

the Runx2-mTmG mice until one month of age before treating them

with Dox for 15 days. Whereas the control littermates exhibited no

GFP (Fig. 4H, I), the Runx2-mTmG mice displayed GFP in both

primary and secondary ossification centers as well as the cortical

bone (Fig. 4J, K). Higher-magnification images revealed that GFP

was expressed by cells associated with the trabecular bone within

the primary and secondary ossification centers, the cortical bone,

as well as by the marrow stromal cells, but not by growth plate

chondrocytes (Fig. 4K1–K3) (Fig. S7). Staining for alkaline

phosphatase activity revealed that the GFP-positive cells on the

bone surfaces expressed the enzyme and therefore were most likely

osteoblast-lineage cells (Fig. S8). Overall, the Runx2-rtTA mouse

line provides a useful tool for targeting the osteoblast-lineage cells

in postnatal animals.

We next employed the Runx2-rtTA allele to activate WNT7B

expression in postnatal bones. Specifically, we generated mice with

the genotype of Runx2-rtTA;TetO-Cre;R26-Wnt7b (hereafter Runx2-

Wnt7b) and treated them with Dox from one month through two

months of age. Untreated Runx2-Wnt7b mice did not have a

phenotype compared to wild type littermates. Moreover, Dox itself

did not affect bone mass in any of the control genotypes (missing at

least one of the three alleles present in the Runx2-Wnt7b mouse).

However, Dox notably increased bone mineral density in the long

bones of Runx2-Wnt7b mice, as indicated by X-ray radiography

(Fig. 5A). MicroCT analyses of the proximal tibial metaphysis

revealed a 6.6-fold increase in trabecular BV/TV over the

untreated littermates with the same genotype (Fig. 5B) (Table 3).

Histology confirmed a marked increase in the trabecular bone

mass in both primary and secondary ossification centers of the

Dox-treated Runx2-Wnt7b mice (Fig. 5C). The increased bone

mass was not produced by suppression of bone resorption, as

serum CTX-I levels were unaltered in the Dox-treated mice

(Fig. 5D), even though osteoclast number or surface normalized to

bone surface was reduced (Fig. 5E). On the other hand, osteoblast

numbers normalized to bone surface were markedly increased in

the Dox-treated over non-treated Runx2-Wnt7b mice (Fig. 5F).

Thus, temporal induction of WNT7B in postnatal mice greatly

increases bone mass thorough stimulation of bone formation.

Table 1. mCT analyses of ColI-Wnt5a at 2 months of age.

Mouse BV/TV Tb. N* Tb. Th* Tb. Sp*

(%) Ratio t-test (1/mm) Ratio t-test (mm) Ratio t-test (mm) Ratio t-test

ColI-Wnt5a 6.8760.19 1.03 P = 0.89 2.0760.07 0.93 P = 0.25 0.05760.001 1.01 P = 0.85 0.4860.02 1.04 P = 0.30

WT 6.6662.52 2.2160.16 0.05660.008 0.4660.03

BV: bone volume; TV; total volume; Tb. N*: trabeculae number; Tb. Th*: trabeculae thickness; Tb. Sp*: trabeculae spacing; data obtained from 100 of 16-mm slices
immediately below growth plate, n = 3 for each group.
doi:10.1371/journal.pgen.1004145.t001

Table 2. mCT analyses of ColI-Wnt7b at 2, 6, and 9 months of age.

Age Mouse BV/TV Tb. N* Tb. Th* Tb. Sp*

(%) Ratio t-test (1/mm) Ratio t-test (mm) Ratio t-test (mm) Ratio t-test

2 months Col-Wnt7b 99.6460.29 13.7 P = 1.19E-07 3.5660.48 1.6 P = 0.06 0.51860.023 9.0 P = 0.0008 0.0460.02 0.8 P = 0.01

WT 7.2361.88 2.1960.82 0.05760.003 0.5160.18

6 months Col-Wnt7b 73.03613.92 5.1 P = 0.001 3.2160.45 1.9 P = 0.004 0.28460.105 3.5 P = 0.028 0.3460.09 0.5 P = 0.008

WT 14.2162.39 1.6860.12 0.08160.001 0.6360.03

9 months Col-Wnt7b 11.7361.87 0.7 P = 0.012 1.5960.39 0.6 P = 0.119 0.08860.007 1.0 P = 0.48 0.6960.19 0.8 P = 0.12

WT 17.7461.54 2.5260.71 0.08460.005 0.4360.13

BV: bone volume; TV; total volume; Tb. N*: trabeculae number; Tb. Th*: trabeculae thickness; Tb. Sp*: trabeculae spacing; data obtained from 100 of 16-mm slices
immediately below growth plate, n = 3 for each group.
doi:10.1371/journal.pgen.1004145.t002
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WNT7B and WNT3A activate mTORC1 signaling
We next investigated the signaling mechanism mediating

WNT7B regulation of osteoblast differentiation. To explore the

potential that WNT7B activated b-catenin signaling in bone, we

used the TOPGAL transgene as a reporter in vivo [40]. By

comparing the LacZ staining signal on sections of long bones from

ColI-Wnt7b mice versus littermate controls, we did not detect any

consistent upregulation of the signal in the perichondrium,

trabecular or cortical bone, all tissues targeted by ColI-Cre (Fig.

S9). We next utilized ST2 cells, a bone marrow stromal cell line

undergoing osteoblast differentiation in response to virally

expressed WNT7B [25]. Consistent with the in vivo finding above

and our previous results, WNT7B did not activate the Lef-

luciferase reporter, a readout for b-catenin signaling, in transient

transfection assays [25] (Fig. 6A). However, WNT7B activated

mTORC1 signaling in ST2 cells, as indicated by increased

phosphorylation of S6 and 4EBP1 (Fig. 6B) (Fig. S10A). We

further found that S6 and 4EBP1 phosphorylation was stimulated

in the long bones of Osx-Wnt7b mice over the control (Fig. 6C) (Fig.

S10B). Thus, WNT7B activates mTORC1 both in vitro and in

vivo.

We then explored the molecular mechanism mediating

mTORC1 activation by WNT. Inhibition of either PI3K or

PI3K-mediated AKT activation markedly suppressed mTORC1

activity with or without WNT7B expression in ST2 cells (Fig. 6B,

D), but knockdown of b-catenin had no effect (Fig. 6E). Similarly,

purified recombinant WNT3A protein activated S6 and 4EBP1

phosphorylation in a PI3K- and AKT-dependent manner (Fig. 6F)

(Fig. S10C). The phosphorylation of S6 is specific to mTORC1

activation as we previously showed that knockdown of raptor

abolished the induction by WNT3A, and here rapamycin

eliminated the phosphorylation [29] (Fig. 6F). Because the purified

protein offers the advantage of studying signaling events after

short-term treatments, we used WNT3A for subsequent experi-

ments. Recombinant DKK1 protein dose-dependently suppressed

WNT3A-induced mTORC1 activation (Fig. 6G and data not

shown). Knockdown of LRP5 increased basal mTORC1 due to an

unknown mechanism, but did not suppress the induction by

WNT3A (Fig. 6H, I). In contrast, knockdown of LRP6 either

alone, or together with LRP5, abolished WNT3A-induced

mTORC1, indicating a predominant role of LRP6 in this

regulation (Fig. 6H, I). Inhibition of GSK3 by LiCl suppressed

Figure 2. WNT7B increases osteoblast number and activity. (A, B) H&E staining of longitudinal tibia sections from two-month-old control (A)
or ColI-Wnt7b littermates (B). 1u, 2u: primary and secondary ossification center. Shown to the right are higher magnification images of secondary
ossification center (A1, B1), growth plate (A2, B2), primary spongiosa (A3, B3), and marrow region (A4, B4). Scale bar: 0.5 mm in panels A, B; 0.1 mm in
panels A1–A4, B1–B4. (C) Serum osteocalcin levels of control (C) and ColI-Wnt7b littermates (7b) at one and two months of age. (D) Number of
osteoblasts normalized to trabecular bone perimeter on longitudinal tibia sections. (E–F) Representative images of calcein double labeling in the
humerus of two-month-old control (E) and ColI-Wnt7b (F) littermates. (G) Dynamic histomorphometry parameters from secondary ossification center
of the humerus. MAR: mineral apposite rate; MS/BS: mineralizing surface over bone surface; BFR/BS: bone formation rate. (H) Serum CTX-I levels. (I)
Osteoclast parameters from histomorphometry. #Oc/mm: osteoclast number normalized to trabecular bone perimeter, mm/Oc (average osteoclast
surface), Oc S/BS (osteoclast surface normalized to bone surface). All bar graphs show mean 6 STDEV, *: P,0.05, n = 3.
doi:10.1371/journal.pgen.1004145.g002
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the basal mTORC1 level, but did not reduce the extent of

induction by WNT3A (Fig. 6J). Thus, WNT3A activates

mTORC1 through LRP6-PI3K-AKT signaling, likely indepen-

dent of GSK3 inhibition.

WNT7B stimulates bone formation in part through
mTORC1

We next examined the potential role of mTORC1 in WNT-

induced osteoblast differentiation. Rapamycin, a potent mTORC1

inhibitor, suppressed WNT7B-induced osteoblast differentiation in

ST2 cells, as determined by alkaline phosphatase activity assay and

von Kossa staining (Fig. S11). To test the relevance of mTORC1

activation in WNT7B-induced bone formation in vivo, we took

advantage of Osx-Cre that can be suppressed by Dox to activate

R26-Wnt7b or delete Raptor alone or in combination, specifically

after one month of age. When Osx-Cre was Dox-suppressed until

one month of age and then released for one month via Dox

removal, the Osx-Wnt7b mice exhibited a profound high-bone-

mass phenotype as indicated by both X-ray radiography, histology

and mCT analyses (Fig. S12A, B) (Table S1). Serum biochemistry

and histomorphometry confirmed that the high bone mass was

caused by increased bone formation (Fig. S12C–G). In contrast,

when Osx-Cre;Raptorf/f mice were Dox-treated till one month of age

and then weaned off Dox for three weeks immediately before

harvest, they did not exhibit any bone phenotype detectable by X-

ray radiography, mCT or histology, when compared to either Osx-

Cre;Raptorf/+ or wild-type littermates (Fig. 7A, B, E, F, I, J and data

not shown). Thus, inducible overexpression of WNT7B at one

month of age caused high bone mass, but inducible deletion of

Raptor at this age for three weeks did not affect bone mass.

Next, we asked whether deletion of Raptor would affect the high-

bone-mass phenotype caused by WNT7B expression. To increase

the ratio of the desired genotype (Osx-Cre;R26-Wnt7b;Raptorf/f)

among the progenies, we set up mating pairs between Osx-Cre;

R26-Wnt7b; Raptorf/+ and Raptorf/f mice. Progenies with either Osx-

Cre;R26-Wnt7b;Raptorf/+, or Osx-Cre;R26-Wnt7b;Raptorf/f (hereafter

Osx-Wnt7b-RaptorCKO) genotype were treated with Dox from

conception until one month of age, and then weaned off Dox for

three weeks before harvest. Mice with the genotype of Osx-

Cre;R26-Wnt7b;Raptorf/+exhibited a very high bone mass according

to X-ray radiography and mCT analyses (Fig. 7C, G). In

comparison, the bone mass in the Osx-Wnt7b-RaptorCKO mice

was notably reduced (Fig. 7D, H). Histology showed that the bone

marrow cavity was expanded in the Osx-Wnt7b-RaptorCKO mice

Figure 3. WNT7B stimulates bone acquisition in the embryo. (A) Whole-mount skeletal staining at E18.5. Arrows denote more bone in skull
and limbs of ColI-Wnt7b embryos. (B) H&E staining of longitudinal tibial sections at E18.5. Shown below are images of the diaphyseal region at a
higher magnification. (C, D) Analyses of longitudinal sections of the humerus at E14.5 (C) and E16.5 (D) by histology and in situ hybridization. (E)
Immunostaining of GFP and CD31 on longitudinal sections of the humerus in E16.5 Osx-Wnt7b embryos. GFP: green; CD31: red; DAPI: blue. (F)
Analyses of longitudinal sections of the humerus at E18.5 by histology and in situ hybridization. In situ hybridization signals shown in red.
doi:10.1371/journal.pgen.1004145.g003

WNT Promotes Bone Formation via mTORC1

PLOS Genetics | www.plosgenetics.org 6 January 2014 | Volume 10 | Issue 1 | e1004145



compared to Osx-Cre;R26-Wnt7b;Raptorf/+ littermates, although still

smaller than that in the Osx-Cre;Raptorf/+or Osx-Cre;Raptorf/f mice

(Fig. 7I–L). Western analyses of bone protein extracts revealed that

S6 phosphorylation was reduced by ,50% in Osx-Wnt7b-

RaptorCKO mice compared to Osx-Cre;R26-Wnt7b;Raptorf/+

littermates (Fig. 7M, lanes 3 and 4). Immunohistochemistry

confirmed a marked reduction of S6 phosphorylation in the

primary spongiosa of Osx-Wnt7b-RaptorCKO mice compared to the

Osx-Cre;R26-Wnt7b;Raptorf/+ control (Fig. 7N). Histomorphometric

studies indicated that Raptor deletion reduced the WNT7B-induced

osteoblast hyperactivity (Fig. 7O, P), but did not suppress the

increase in osteoblast number (Fig. 7Q). Moreover, Raptor deletion

had no effect on bone resorption, as neither the serum CTX-I level

nor any of the osteoclast parameters changed (Fig. 7R). Thus,

mTORC1 signaling contributes to WNT7B-induced bone forma-

tion through stimulation of osteoblast function.

Discussion

We have provided evidence that WNT7B is a potent bone

anabolic protein both during embryogenesis and in the postnatal

life of mice. Specifically, WNT7B markedly increases both the

number and function of osteoblasts. We further identify mTORC1

as an important mediator for WNT-mediated bone anabolism. At

the mechanistic level, WNT proteins activate mTORC1 through

PI3K-AKT signaling.

Of note, mTORC1 appears to mediate the increase in

osteoblast activity but not number in response to WNT7B. In

our genetic experiments, inducible deletion of Raptor did not

completely abolish S6 phophorylation induced by WNT7B in

bone protein extracts. Therefore, the observed degree of

correction in osteoblast activity may be an underestiamte of the

full contribution of mTORC1 to WNT7B-induced osteoblast

function. Because of the same reason, we cannot rule out the

possibiltiy that the remaining portion of WNT7B-induced

mTORC1 activtiy contributed to the increase in osteoblast

number in the compound mutants. Alternatively, mTORC2

hyperactivation may be a contributing factor as we observed

heightened mTORC2 signaling in the bones of the Osx-Wnt7b

mice (data not shown). Moreover, since WNT7B also activates

PKCd through phosphoinositide signaling [25], PKCd activation

may contribute to WNT7B-induced osteoblastogenesis. On the

other hand, our data do not support b-catenin as a main effector

for WNT7B function in the present setting. First, WNT7B did not

activate b-catenin signaling in ST2 cells although it induced

osteoblast differentiation. Second, in vivo studies with the TOPGAL

allele failed to detect increased b-catenin signaling in the bones of

either ColI-Wnt7b or Osx-Wnt7b embryos. Finally, the bone

Figure 4. Generation and characterization of Runx2-rtTA transgenic mice. (A) A schematic for generating the Runx2-rtTA BAC transgenic
mouse. (B–C) GFP imaging by fluorescence microscopy of whole-mount skeletal elements (left to right: skull, forelimb, ribs, hindlimb, vertebrae) from
R26-mTmG (B) or Runx2-rtTA;TetO-cre;R26-mTmG (C) neonates treated with 1 mg/ml Dox in drinking water from E1.5 till birth. (D–G) Fluorescence
imaging of frozen sections of the tibia from R26-mTmG (D, E) or Runx2-rtTA; TetO-Cre; R26-mTmG (F, G) neonates treated with 1 mg/ml Dox from E1.5
to birth. D, F: GFP single channel; E, G: GFP and RFP merged image. Boxed areas in G are shown at a higher magnification in G1 (growth plate), G2
(primary spongiosa) and G3 (diaphysis). (H–K) GFP detection on longitudinal tibial sections of R26-mTmG (H, I) or Runx2-rtTA;TetO-Cre;R26-mTmG (J,K)
mice treated with 1 mg/ml Dox in drinking water for 15 days starting at 1 month of age. H, J: GFP immunofluorescence; I, K: merged images of GFP
and RFP signals. RFP from direct fluorescence microscopy. Boxed areas in K are shown in K1 (primary spongiosa), K2 (cortical bones) and K3
(diaphyseal bone marrow). 1u, 2u: primary and secondary ossification center, respectively. Arrow: GFP+ bone marrow stromal cell; arrowhead: GFP+

perivascular cells.
doi:10.1371/journal.pgen.1004145.g004
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phenotype of the Osx-Wnt7b mouse was distinct from that of the

mouse with a stabilized form of b-catenin expressed in Osx-lineage

cells, which included premature mineralization and suppression

of OC expression [21]. Overall, a comprehensive understanding of

the mechanisms underlying the potent bone anabolic function of

WNT7B may provide molecular targets for developing novel bone

anabolic drugs.

In addition to the strong bone anabolic effect, WNT7B also

appeared to suppress osteoclast numbers when normalized to the

bone surface area. This finding held true both in mice beginning to

express WNT7B in the embryo (ColI-Wnt7b) and in those

expressing it only postnatally (Runx2-Wnt7b with Dox). In either

model, total bone resorption activity as measured by serum CTX-

1 was either increased or not changed depending on the age, when

compared to control littermates. Thus, we conclude that the effect

of WNT7B on osteoclasts did not add to the high-bone-mass

phenotype. Nonetheless, it is of future interest to determine the

mechanism for the suppression of osteoclast number by WNT7B.

We show that GSK3 inhibition suppresses basal level phos-

phorylation of S6 but not its induction by WNT3A. This

observation contradicts a previous report that GSK3 inhibition

mediates mTORC1 activation by WNT3A [27], but is in

agreement with another study identifying GSK3 as an activator

of S6K1 via direct phosphorylation [41]. The basis for the

discrepancy between these studies is not known at present.

Nonetheless, our results support an alternative model that WNT

proteins activate mTORC1 through PI3K-AKT signaling.

Previous studies have implicated other WNT proteins in

controling bone mass. Wnt10b2/2 mice showed an initial increase

in bone mass at one-month of age, but subsequently exhibited age-

dependent bone loss [35,37]. Transgenic mice overexpressing

WNT10B from either FABP4 or OC promoter increased bone

Figure 5. WNT7B enhances bone accrual in postnatal life. All data from Runx2-rtTA;TetO-Cre;R26-Wnt7b mice treated with (+Dox) or without
(2Dox) 1 mg/ml Dox in drinking water from one month through two months of age. (A) X-ray images of hindlimbs. Arrows point to the places with
increased bone mineral density. (B) mCT 3D reconstruction of metaphyseal trabecular bone of the tibia. (C) H&E staining of sections of the proximal
tibias. (D) Serum CTX-I levels of two-month-old mice. (E) Histomorphometric parameters of osteoclasts on tibial sections. #Oc/mm: osteoclast
number normalized to trabecular bone perimeter; Oc S/BS: osteoclast surface normalized to bone surface; mm/Oc: average osteoclast surface. (F)
Number of osteoblasts normalized to trabecular bone perimeter on tibia sections. Bar graphs show mean 6 STDEV, *: P,0.05, n = 3. f: femur; t: tibia;
m: metatarsal.
doi:10.1371/journal.pgen.1004145.g005

Table 3. mCT analyses of Runx2-Wnt7b with or without Dox from one through two months of age.

Mouse BV/TV Tb. N* Tb. Th* Tb. Sp*

(%) Ratio t-test (1/mm) Ratio t-test (mm) Ratio t-test (mm) Ratio t-test

+Dox 61.59611.51 6.6 P = 0.001 3.4260.57 1.3 P = 0.16 0.23260.038 4.1 P = 7.32E-06 0.3760.03 0.88 P = 0.71

2Dox 9.2863.43 2.5460.76 0.05760.004 0.4260.10

BV: bone volume; TV; total volume; Tb. N*: trabeculae number; Tb. Th*: trabeculae thickness; Tb. Sp*: trabeculae spacing; data obtained from 100 of 16-mm slices
immediately below growth plate, n = 3 for each group.
doi:10.1371/journal.pgen.1004145.t003
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mass in postnal mice [35,36]. However, the WNT10B-induced

bone phenotype was less severe than that of the WNT7B-

expressing mice. In addition, haploinsufficiency of WNT5A was

reported to reduce bone mass in postnatal mice, and WNT5A was

shown to stimulate both osteoblast differentiation via the

suppression of PPARG-mediated adipogenesis, and osteoclasto-

genesis through upregulation of RANK in the macrophage

progenitors [26,39]. However, overexpression of WNT5A in our

study did not have an obvious effect on bone mass. We

acknowledge that our small sample size is not sufficiently powered

to detect minor changes. Moreover, WNT5A may have effects on

bone formation and resorption that offset each other in the

overexpression model. Nonetheless, the present study identifies

WNT7B as a potent anabolic WNT ligand in the mouse.

It is of interest to note that despite its robust bone anabolic activity,

WNT7B did not obviously increase the width of the long bones. This

observation is somewhat surprising because SOST-deficient or LRP5

high-bone-mass mutant mice displayed a clear increase in periosteal

growth [15,42]. It is possible that the SOST and LRP5 regulate

endogenous WNT ligands that are of distinct signaling properties

from WNT7B, or that the level of WNT7B expressed from the

Rosa26 locus in our model does not reach the necessary threshold

within the periosteal compartment. On the other hand, we cannot

rule out the possibility that mutations in SOST or LRP5 may alter the

activity of other non-WNT signals responsible for periosteal growth.

Future studies are necessary to distinguish these possibilities.

Methods

Ethics statement
The Animal Studies Committee at Washington University has

reviewed and approved all mouse procedures used in this study.

Mouse strains
To generate the Runx2-rtTA transgene, we modified a Runx2

BAC (bacterial artificial chromosome, clone# RP23-180J20)

Figure 6. WNT7B and WNT3A activate mTORC1 signaling. (A) Transient transfection assays with luciferase reporter Lef1-luc in ST2 cells. IE:
GFP-expressing control retrovirus; 7B: WNT7B-expressing retrovirus; V: vehicle (0.1% CHAPS in PBS); 3A: WNT3A. (B) Western blot with whole-cell
lysates from ST2 cells infected with WNT7B or control (IE) retrovirus. Cells were serum-starved for 16 hours and then treated with inhibitor or vehicle
for 2 hours before harvest. (C) Representative image (left) and quantification (right) of Western analyses with bone protein extracts from two-month-
old Osx-Cre (Ctrl) and Osx-Wnt7b (7B) littermate mice. Levels of P-S6/S6 in control littermates designated 1. *: P,0.05, n = 3. (D) Western blot with
whole-cell lysates from ST2 cells infected with WNT7B or control (IE) retrovirus. Cells were serum-starved for 16 hours and then treated with inhibitor
or vehicle for 2 hours before harvest. (E) Western blot of total cell lysates from ST2 cells infected with lentivirus expressing shRNA for b-catenin or
LacZ, followed by retroviral infection of WNT7B or GFP (IE). (F) Western blot of total cell lysates from serum-starved ST2 cells treated with WNT3A or
vehicle (V) for 1 hour with or without inhibitors (with 1-hr pretreatment). Rapa: rapamycin. (G) Western blot of total cell lysates from serum-starved
ST2 cells treated with WNT3A or vehicle (V) for 1 hour with or without DKK1 (with 1-hr pretreatment). (H–I) Effects of LRP5 and/or LRP6 knockdown
with shRNA. ST2 cells infected with lentiviruses were serum-starved before WNT3A treatment for 1 hour. (H): representative Western blots; (I):
quantification of pS6/S6 from three independent experiments, *: p,0.05. (J) Effects of GSK3 inhibition. Serum-starved ST2 cells were treated with
WNT3A for 1 hour in the presence of LiCl or NaCl.
doi:10.1371/journal.pgen.1004145.g006
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(Children’s Hospital of Oakland Research Institute) to replace the

first exon of Runx2 with the cDNA for rtTA2S-M2 [43]. Briefly, a

,500 bp PCR amplicon immediately upstream of the Runx2

starting ATG (forward primer: 59 GGAAGCCACAGTGGTAGG

39; reverse primer: 59 TGTAAATACTGCTTGCAGCC 39), the

cDNA for rtTA2S-M2 excised from pUHrT62-1 [43], and a

,600 bp PCR amplicon immediately downstream of the Runx2

starting ATG (forward primer: 59 CCGTGTCAGCAAAGCTTC

39; reverse primer: 59 CAGGCTAATAGAGATATCTG 39) were

inserted into pSV-Flp at the PmeI, XhoI, and SalI site,

respectively. The resulted plasmid was digested with AscI/PmeI

to release the targeting construct. Subsequent BAC recombineer-

ing was performed as described [44,45,46]. Pronuclear injection

was performed at Washington University Pathology/Immunology

Micro-Injection Core.

The Rosa26-Wnt7b and -Wnt5a mouse strains were generated

with a similar strategy as previously described for Rosa26-DNGli2

[47]. The 2.3ColI-Cre, Osx-Cre, TetO-Cre, Wnt1-Cre, R26-mT/mG,

and Raptorf/f mice are as previously described [21,48,49,50,51,52].

Doxycycline treatment
Mice were exposed to doxycycline (Sigma, St. Louis) through

drinking water containing 2% sucrose. Either 1 mg/ml or 50 mg/

ml Dox in the drinking water was used for the Runx2-rtTA or the

Osx-Cre mice, respectively.

Analyses of embryonic skeleton
Whole-mount skeletal staining with alizarin red and alcian blue

is as previously described [53]. For paraffin sections, dissected

limbs were fixed with 10% formalin and sectioned at 6 mm

thickness. For frozen sections, limbs were fixed with 4%

paraformaldehyde, incubated in 30% sucrose and sectioned in

OCT at 8 mm thickness. Limbs from E16.5 and older embryos

Figure 7. Removal of Raptor partially rescues WNT7B-induced bone formation. All data from mice treated with Dox from E1.5 till one
month of age, then weaned off Dox for three weeks immediately before harvest. (A–D) X-ray images of hindlimbs from Osx-Cre;Raptorf/+ (A), Osx-
Cre;Raptorf/f (B), Osx-Cre;R26-Wnt7b;Raptorf/+ (C), and Osx-Cre;R26-Wnt7b;Raptorf/f mice (D). (E–H) mCT 3D reconstruction of tibias from Osx-Cre;Raptorf/+

(E), Osx-Cre;Raptorf/f (F), Osx-Cre;R26-Wnt7b;Raptorf/+ (G), and Osx-Cre;R26-Wnt7b;Raptorf/f mice (H). Shown below is mean 6 STDEV of combined
cortical and trabecular bone volume normalized to tissue volume (BV/TV%) from three mice of each genotype. See Experimental Procedures for
details. *: p,0.05 between G and H. (I–L) H&E staining of longitudinal tibia sections from Osx-Cre;Raptorf/+ (I), Osx-Cre;Raptorf/f (J), Osx-Cre;R26-
Wnt7b;Raptorf/+ (K) and Osx-Cre;R26-Wnt7b;Raptorf/f mice (L). (M) Western blot analysis of bone extracts from Osx-Cre;Raptorf/+ (lane 1), Osx-Cre;Raptorf/

f (lane 2), Osx-Cre;R26-Wnt7b;Raptorf/+ (lane 3), and Osx-Cre;R26-Wnt7b;Raptorf/f mice (lane 4). (N) P-S6 immunohistochemistry on longitudinal sections
of tibias from Osx-Cre;R26-Wnt7b;Raptorf/+ (left) and Osx-Cre;R26-Wnt7b;Raptorf/f mice (right). Shown below are images of a higher magnification for
boxed areas (junction between growth plate and primary spongiosa). Signal in brown. (O) Representative images of calcein double labeling in tibias
of Osx-Cre;Raptorf/+ (1), Osx-Cre;Raptorf/f (2), Osx-Cre;R26-Wnt7b;Raptorf/+ (3) and Osx-Cre;R26-Wnt7b;Raptorf/f mice (4). (P) Bone formation parameters
from the primary ossification center. (Q) Number of osteoblasts normalized to trabecular bone perimeter (#Ob/mm) on tibia sections. (R) Osteoclast
parameters. All bar graphs show mean 6 STDEV, *: P,0.05, n = 3.
doi:10.1371/journal.pgen.1004145.g007
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were decalcified in 14% EDTA for 1–2 days after fixation.

Histology and in situ hybridization with 35S-labeled probes were

performed on paraffin sections as previously described [18,53].

Analyses of postnatal skeleton
X-ray radiography was performed with a Faxitron X-ray system

set at 25 kv for 20 seconds. mCT analyses were performed with

Scanco mCT 40 (Scanco Medical AG) according to ASBMR

guidelines [54]. Quantification of the trabecular bone in the tibia

was performed with 100 mCT slices (1.6 mm total) immediately

below the growth plate. In the Raptor deletion experiment, the

combined trabecular and cortical bone mass was quantified with

550 mCT slices (8.8 mm total) starting from 1.6 mm below the

articular surface.

For sections, bones were fixed in 10% buffered formalin

overnight at room temperature, followed by decalcification in 14%

EDTA with daily change of solution for 2 weeks. After

decalcification, bones were processed for paraffin embedding

and then sectioned at 6 mm thickness. H&E and TRAP staining

were performed on paraffin sections following the standard

protocols. For dynamic histomorphometry, mice were injected

intraperitoneally with calcein (20 mg/kg, Sigma, St. Louis, MO) at

7 and 2 days before sacrifice, and bones were fixed in 70% ethanol

and embedded in methyl-methacrylate for plastic sections. Both

static and dynamic histomorphometry were performed with the

commercial software Bioquant II.

For serum-based biochemical assays, serum was collected from

mice after 6 hours of fasting. Serum osteocalcin levels were

determined with the Mouse Osteocalcin EIA Kit (Biomedical

Technologies, Stoughton, MA). Serum CTX-I assay was per-

formed using the RatLaps ELISA kit (Immunodiagnostic Systems,

Ltd.).

Bone protein extracts were prepared from femurs and tibias of

postnatal mice with RIPA buffer. The ends of the bones were

surgically removed, and the bone marrow was discarded by

centrifugation. The bones were then rinsed twice with cold PBS,

flash-frozen in liquid nitrogen, and ground manually into a fine

power with a mortar and a pestle. The bone power was incubated

with 200 ml RIPA buffer on ice for 30 minutes before the

supernatant was collected for Western analysis.

Immunohistochemistry
GFP was examined either directly by fluorescence microscopy

or by immunostaining on frozen sections using a chicken

polyclonal GFP antibody (Abcam, Cambridge, MA). CD31

immunostaining was performed on frozen sections using a rat

CD31 antibody (BD Biosciences, San Jose, CA). To detect P-S6,

paraffin sections were de-paraffinized, treated with trypsin for

10 minutes, and blocked with 10% sheep serum before being

incubated with a rabbit polyclonal antibody against Phospho-S6

Ribosomal Protein (Ser240/244) (Cell Signaling Technology,

Danvers, MA).

Cell culture, transfection and infection
ST2 cells were cultured in a-MEM (Sigma) with 10% fetal

bovine serum (referred as growth medium). Retrovirus expressing

GFP or WNT7B was produced as previously described [25], and

diluted 1:1 with growth medium before use. For viral infections,

cells were incubated with the virus for 8 hours before switched to

growth medium. For Western analyses of P-S6 in the virally

infected cells, the cells were cultured in complete medium for

32 hours, and then in serum-free medium for 16 hours before

harvest. AP staining was performed at 3 days after the viral

infection. Von Kossa staining was performed with infected cells

cultured for 6 days (media changed every three days) in growth

medium supplemented with 50 mg/ml ascorbic acid and 10 mM

b-glycerophosphate. Rapamycin (LC Laboratories) dissolved in

DMSO was used at 20 nM.

For transient transfection assays, ST2 cells seeded in 24-well

plate at 36104/well overnight were transfected for 8 hours with

200 ng Lef1-luc reporter and 20 ng pRL-Renilla (Promega) mixed

with 1 ml Lipofectamine (Invitrogen), and then cultured in fresh

growth medium for 16 hours. The transfected cells were then

infected with the GFP- or WNT7B-expressing virus for 8 hours,

incubated with fresh growth medium containing either vehicle or

50 ng/ml WNT3A for 2 days before harvest. Luciferase assays

were performed with Dual-Luciferase Reporter Assay System

(Promega).

Antibodies, proteins and chemicals
Antibodies for S6K1, P-S6K1(T389), S6, P-S6(S240/244),

FoxO3a, pFoxO1(T24)/3a(T32), P-Lrp6 (S1490), Lrp5, b-actin,

and a-tubulin were purchased from Cell Signaling (Beverly, MA).

Antibodies for Lrp6 and b-catenin were from Santa Cruz

Biotechnology (Santa Cruz, CA).

Recombinant mouse Wnt3a and Dkk1 were purchased from

R&D Systems (Minneapolis, MN), and used at 50 ng/ml and

500 ng/ml, respectively. AKT inhibitor IV was from EMD

Millipore (Billerica, MA), and used at 10 mM. PI3K inhibitor

LY294002 was from XXXX and used at 50 mM. LiCl and NaCl

were purchased from Sigma (Saint Louis, MO) and used at

20 mM. Rapamycin was purchased from LC Laboratories

(Woburn, MA), and used at 20 nM.

shRNA knockdown
To generate shRNA lentiviruses, shRNA vectors were co-

transfected into HEK293T cells with the packaging plasmids

pCMV-dR8.2 dvpr (Addgene) and pCMV-VSV-G (Addgene)

using FuGENE 6 (Roche). Supernatants were collected 48 hrs

after transfection, and passed through 0.45 mm nitrocellulose

filters. ST2 cells were infected with viral supernatants diluted 1:1

with growth medium and supplemented with 5 mg/mL Polybrene.

For the b-catenin knockdown experiment, ST2 cells were infected

with shb-catenin or shLacZ lentivirus for 8 hrs. After 16 hrs of

recovery, the cells were further infected with retroviruses

expressing GFP (IE) or Wnt7b (7B) for 8 hrs. After 24 hrs of

recovery, the cells were then cultured in serum-free growth

medium for 16 hrs before cells were lysed for Western blot. For

Lrp5/6 knockdown experiment, ST2 cells were infected with

shLrp5, shLrp6 or shLacZ virus for 8 hrs. Infected ST2 cells were

incubated with fresh growth medium for 24 hrs, and then cultured

in serum-free medium for 16 hrs. The serum-starved cells were

treated with either vehicle or Wnt3a for 1 hr before being

harvested for Western blot analysis.

Statistical analyses
All quantitative data are presented as mean 6 STDEV with a

minimum of three independent samples. Statistical significance is

determined by two-tailed Student’s t-test.

Supporting Information

Figure S1 Representative Southern blot of EcoRV-digested

genomic DNA from ES cells showing correct targeting of the

Rosa26 locus. Wild-type allele: 11 kb; targeted allele: 3.8 kb. Lane

1: wild type ES cells; lane 2: ES cells carrying one Rosa26-Wnt7b

allele.

(TIF)
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Figure S2 X-ray radiography of hindlimbs from Osx-Cre versus

Osx-Wnt7b mice at two months of age.

(TIF)

Figure S3 WNT7B overexpression in bone causes splenomeg-

aly. (A–B) Whole-mount images of isolated spleens from two-

month-old control (A) or ColI-Wnt7b littermate mice (B). (C)

Quantification of spleen weight from two-month-old littermates.

Bar graphs show mean 6 STDEV, *: P,0.05, n = 3.

(TIF)

Figure S4 WNT7B expression maintains high bone mass in

older mice. (A, B) X-ray radiography of the hindlimbs at six (A)

and nine (B) months of age. (C, D) Serum CTX-I levels. Bar

graphs show mean 6 STDEV, *: P,0.05, n = 3.

(TIF)

Figure S5 WNT7B does not change osteocyte density in bone.

Number of osteocytes were normalized to trabecular bone areas on

longitudinal tibia sections from two-month-old littermate mice. n = 3.

(TIF)

Figure S6 WNT7B enhances bone formation in the late-stage

embryo. Histology and in situ hybridization performed on

longitudinal tibial sections from E18.5 control and ColI-Wnt7b

littermate embryos.

(TIF)

Figure S7 Runx2-rtTA targets osteoblasts and bone marrow

stromal cells but not growth plate chondrocytes in postnatal mice.

Shown are high-resolution fluorescent images of longitudinal tibial

sections from Runx2-rtTA;TetO-Cre;R26-mTmG mice treated with

1 mg/ml Dox in drinking water for 15 days starting at 1 month of

age. Images are taken from primary ossification center (left),

secondary ossification center and growth plate (middle), and bone

marrow area (right). GP: growth plate.

(TIF)

Figure S8 Runx2-rtTA targets osteoblast-lineage cells express-

ing alkaline phosphatase (AP). AP staining (left, blue) and GFP

(middle, green) immunofluorescence of frozen sections of the tibia

from Runx2-rtTA; TetO-Cre; R26-mTmG neonates treated with

1 mg/ml Dox from E1.5 to birth. BM: bone marrow.

(TIF)

Figure S9 WNT7B does not increase b-catenin signaling. LacZ

staining of frozen sections from newborn TOPGAL (left) or ColI-

Wnt7b; TOPGAL (right) mice. Cells experiencing b-catenin

signaling stained blue. Note robust signal in chondrocytes and

few blue cells in the perichondrial region (known to be targeted by

ColI-Cre).

(TIF)

Figure S10 WNT7B and WNT3A induce phosphorylation of

4EBP1. (A) Western blot with whole-cell lysates from ST2 cells

infected with WNT7B or control (IE) retrovirus. Cells were serum-

starved for 16 hours before harvest. (B) Western blot analyses with

bone protein extracts from two-month-old Osx-Cre (Ctrl) and Osx-

Wnt7b (7B) littermate mice. (C) Western blot of total cell lysates

from serum-starved ST2 cells treated with WNT3A (3A) or vehicle

(V) for 1 hour.

(TIF)

Figure S11 Rapamycin inhibits Wnt-induced osteoblast differ-

entiation. Alkaline phosphatase (AP) (top) and von Kossa staining

(bottom) at 72 hours and 6 days, respectively, after retroviral

infection. IE: virus expressing GFP; 7b: virus expressing Wnt7b;

Rapa: rapamycin.

(TIF)

Figure S12 WNT7B overexpression in one-month-old mice

stimulates bone formation. Osx-Cre or Osx-Wnt7b mice were

treated with Dox from conception until one month, and then

weaned off Dox for one month before harvest. (A) X-ray images.

(B) H&E staining of longitudinal tibial sections. (C) Serum

osteocalcin levels. (D–F) Dynamic histomorphometry parameters

from secondary ossification center of the tibia. MAR: mineral

apposite rate; MS/BS: mineralizing surface over bone surface;

BFR/BS: bone formation rate. (G) Serum CTX-I levels. Bar

graphs show mean 6 STDEV, *: P,0.05, n = 3.

(TIF)

Table S1 MicroCT analyses of Osx-Wnt7b mice with Dox

removal from one through two months of age.

(TIF)
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